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Fast Fine-Grained Image Classification via Weakly
Supervised Discriminative Localization

Xiangteng He, Yuxin Peng , and Junjie Zhao

Abstract— Fine-grained image classification is to recognize
hundreds of subcategories in each basic-level category. Existing
methods employ discriminative localization to find the key
distinctions between similar subcategories. However, they gen-
erally have two limitations: 1) discriminative localization relies
on region proposal methods to hypothesize the locations of
discriminative regions, which are time-consuming and the bot-
tleneck of improving classification speed and 2) the training of
discriminative localization depends on object or part annotations
which are heavily labor-consuming and the obstacle of marching
toward practical application. It is highly challenging to address
the two limitations simultaneously, while existing methods only
focus on one of them. Therefore, we propose a weakly supervised
discriminative localization approach (WSDL) for fast fine-grained
image classification to address the two limitations at the same
time, and its main advantages are: 1) multi-level attention guided
localization learning is proposed to localize discriminative regions
with different focuses automatically, without using object and
part annotations, avoiding the labor consumption. Different
level attentions focus on different characteristics of the image,
which are complementary and boost classification accuracy and
2) n-pathway end-to-end discriminative localization network is
proposed to improve classification speed, which simultaneously
localizes multiple different discriminative regions for one image to
boost classification accuracy, and shares full-image convolutional
features generated by a region proposal network to accelerate
the process of generating region proposals as well as reduce
the computation of convolutional operation. Both are jointly
employed to simultaneously improve classification speed and
eliminate dependence on object and part annotations. Comparing
with state-of-the-art methods on two widely used fine-grained
image classification data sets, our WSDL approach achieves the
best accuracy and the efficiency of classification.

Index Terms— Fast fine-grained image classification, weakly
supervised discriminative localization, multi-level attention.

I. INTRODUCTION

F INE-GRAINED image classification aims to recognize
hundreds of subcategories in the same basic-level cate-

gory, which lies in the continuum between basic-level image
classification (e.g. object recognition [2], [3]) and identifi-
cation of individuals (e.g. face recognition [4], [5]). It is
one of the most significant and highly challenging open

Manuscript received September 30, 2017; revised February 15, 2018;
accepted May 4, 2018. Date of publication May 8, 2018; date of current
version May 3, 2019. This work was supported by the National Natural
Science Foundation of China under Grant 61771025 and Grant 61532005.
This paper was recommended by Associate Editor A. Loui.
(Corresponding author: Yuxin Peng.)

The authors are with the Institute of Computer Science and Technology,
Peking University, Beijing 100871, China (e-mail: pengyuxin@pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2018.2834480

Fig. 1. Examples of CUB-200-2011 dataset [1]. Large variance in the same
subcategory is shown in the first row, and small variance among different
subcategories is shown in the second row.

problems in computer vision area due to the following two
aspects: (1) Large variance in the same subcategory. As shown
in the first row of Fig. 1, the four images belong to the
same subcategory of “Laysan Albatross”, but they are dif-
ferent in poses, views, feathers and so on. It is easy for
human beings to misclassify them into different subcategories.
(2) Small variance among different subcategories. As shown in
the second row of Fig. 1, the four images belong to different
subcategories, but they are all black and look similar. It is
hard for human beings to distinguish “Fish Crow” from the
other three subcategories. These subcategories in the same
basic-level category look similar in global appearance, but
distinct in some discriminative regions of the objects, such
as the head. So the localization of the key discriminative
regions becomes crucial for fine-grained image classification.
Recently, methods based on discriminative localization have
achieved great progress [6]–[12].

Fine-grained image classification has wide applications in
automatic driving, biological conservation, cancer detection,
and so on. In the process of converting technology into
application, there are two important problems that need to be
solved urgently: (1) Time consumption. Some existing methods
mainly focus on achieving better classification accuracy, but
ignore the problem of time consumption. However, real-time
performance is one of the most important criteria in the appli-
cation of fine-grained image classification, which satisfies the
response speed requirements of users. (2) Labor consumption.
The annotations of image (e.g. the image-level subcategory
label, the bounding box of the object and part locations) are
required in the training phase of many existing methods, and
even in the testing phase. While the annotations are labor-
consuming and unrealistic in the applications of fine-grained
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image classification. So utilizing as few annotations as possible
is the key point to convert fine-grained image classification
into application.

Early works only focus on achieving better classifica-
tion accuracy, but ignore aforementioned two problems.
Zhang et al. [6] propose the Part-based R-CNN method,
which learns whole-object and part detectors with geometric
constraints between them. The learning phase of detectors
depends on the annotations of image-level subcategory label,
object and part. They first generate thousands of region
proposals for each image via Selective Search method [13],
which is one of the most popular region proposal methods,
and greedily merges pixels based on engineered low-level
features. Then they utilize the learned whole-object and part
detectors to detect object and parts from the generated region
proposals, and finally predict a fine-grained subcategory based
on a pose-normalized representation. This framework is widely
used in fine-grained image classification. Krause et al. [8]
adopt the box constraint of Part-based R-CNN [6] to train
part detectors with only object annotations. These methods
rely on region proposal methods implemented with CPU to
hypothesize the locations of discriminative regions, which are
time-consuming and the bottleneck of improving classifica-
tion speed. Discriminative localization learning depends on
object or part annotations, which are heavily labor-consuming
and the obstacle of marching towards practical application.
It is highly challenging and significant to address these two
problems simultaneously, while existing methods only focus
on one of them.

For addressing the problem of time consumption,
researchers focus on designing end-to-end network and
avoiding the application of the time-consuming region
proposal methods implemented with CPU. Zhang et al. [14]
propose the Part-stacked CNN architecture, which consists of
a fully convolutional network and a two-stream classification
network. They first utilize fully convolutional network to
localize discriminative regions, and then adopt the two-stream
classification network to encode object-level and part-level
features simultaneously. Part-stacked CNN is over two orders
of magnitude faster than Part-based R-CNN [6], but requires
the annotations of image-level subcategory label, object and
part in the training phase, which is labor-consuming.

For addressing the problem of labor consumption,
researchers focus on the localization of the discriminative
regions under weakly supervised setting, which denotes that
neither object nor part annotations are used in both training and
testing phases. Xiao et al. [9] propose the two-level attention
model: object-level attention is to select region proposals
relevant to a certain object, and part-level attention is to
localize discriminative parts. It is the first work to classify
fine-grained images without using object or part annotations
in both training and testing phases, but still achieve promising
results [15]. Simon and Rodner [11] propose a constellation
model to localize discriminative regions of object, leveraging
CNN to find the constellations of neural activation patterns.
A part model is estimated by selecting part detectors via
constellation model. And then the part model is used to extract
features for classification. These methods avoid depending on

object or part annotations, but they generally utilize Selective
Search [13] method to generate region proposals, which is
time-consuming.

Existing methods only focus on solving one of labor con-
sumption and time consumption problems, achieving improve-
ment at the sacrifice of the other one, which may cause
that the other problem becomes worse. Therefore, this paper
proposes a weakly supervised discriminative localization
approach (WSDL) for fast fine-grained image classification,
which aims to simultaneously solve the above two problems,
improving classification speed and eliminating dependence
on object and parts annotations at the same time. Its main
contributions can be summarized as follows:

• Multi-level attention guided localization learning. Exist-
ing weakly supervised localization methods directly uti-
lize attention maps to generate discriminative regions,
which have two limitations: slow localization speed and
low classification accuracy. Therefore, we propose a
new multi-level attention guided localization learning
approach to implement localization and classification
simultaneously. Attention maps are applied to guide
the secondary localization learning for more accurate
localization and faster localization speed, avoiding the
cost of processing of attention maps in existing weakly
supervised localization methods. Different level attentions
describe the visual content at different characteristics,
carrying multi-grained and multi-scale information. They
are complementary to each other for boosting classifica-
tion accuracy. The learning process is guided by attention
maps, without using object and part annotations, avoiding
the labor consumption.

• n-pathway end-to-end discriminative localization
network. Existing localization methods localize only
one discriminative region at one time, ignoring other
discriminative regions, which should be considered to
boost the classification accuracy. Therefore, we propose
a new n-pathway end-to-end discriminative localization
network to localize different discriminative regions for an
image at the same time. It consists of multiple localization
networks and one region proposal network. Multiple
localization networks share full-image convolutional
features generated by region proposal network, to reduce
the computation of convolutional operation, and avoid
the nearly linear growth of time consumption caused by
the localization of multiple discriminative regions.

Our previous conference paper [16] proposes a discrimina-
tive localization approach via saliency-guided Faster R-CNN,
which localizes the discriminative region in the image to boost
the classification accuracy. The main differences between
the proposed WSDL approach and our previous conference
paper [16] can be summarized as the following two aspects:
(1) Our previous conference paper [16] applies one level
attention, while our WSDL approach further employs multi-
level attention to guide the discriminative localization learning,
which localizes multi-grained and multi-scaled discriminative
regions to boost fine-grained classification accuracy. (2) Our
WSDL approach designs n-pathway network structure to
reduce the growth of time consumption in classification.
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Time consumption is reduced by sharing full-image convo-
lutional features among different localization networks with
different level attentions. The architecture in [16] can only
deal with one level attention, and the application of multi-level
attention will cause the nearly linear growth of time consump-
tion in classification. Comparing with state-of-the-art methods
on two widely-used fine-grained image classification datasets,
the effectiveness of our WSDL approach is verified, achieving
both the best accuracy and efficiency of classification.

The rest of this paper is organized as follows: Section II
briefly reviews related works on fine-grained image classifi-
cation and object detection, Section III presents our WSDL
approach in detail, and Section IV introduces the experimental
results as well as the experimental analyses. Finally Section V
concludes this paper and presents the future works.

II. RELATED WORK

In this section, we review related works on fine-grained
image classification and object detection.

A. Fine-Grained Image Classification

Fine-grained image classification is one of the most funda-
mental and challenging open problems in computer vision, and
has drawn extensive attention in both academia and industry.
Early works [17], [18] focus on the design of feature represen-
tation and classifier based on the basic low-level descriptors,
such as SIFT [19]. The performance of these methods is
limited due to the handcrafted features. Recently, deep learning
has achieved great success in computer vision, speech recog-
nition, natural language processing, and so on. Inspired by
this, many researchers begin to study on the problem of fine-
grained image classification by deep learning [6], [9], [10],
[12], [15], and have achieved great progress.

Since discriminative characteristics generally localize in the
regions of object and its parts, most existing works generally
follow the two-stage pipeline: First localize the object and
parts, and then extract their features to train classifiers. For the
first stage, some works [20], [21] directly utilize the human
annotations (i.e. the bounding box of the object and part
locations) to localize the object and parts. Since the human
annotations are labor-consuming, some researchers begin to
only utilize them in the training phase. Zhang et al. [6] propose
the Part-based R-CNN to directly utilize the object and part
annotations to learn the whole-object and part detectors with
geometric constraints between them. This framework is widely
used in fine-grained image classification.

Recently, fine-grained image classification methods begin
to focus on how to achieve promising performance without
using any object or part annotations. The first work under such
weakly supervised setting is the two-level attention model [9],
which utilizes the attention mechanism of the CNNs to select
region proposals corresponding to the object and parts, and
achieves promising results even compared with those methods
relying on the object and part annotations. Inspired by this
work, Zhang et al. [10] incorporate deep convolutional filters
for both parts selection and description. He and Peng [12]
integrate two spatial constraints for improving the performance
of parts selection.

B. Object Detection

Object detection is one of the most fundamental and chal-
lenging open problems in computer vision, which not only
recognizes the objects but also localizes them in the images.
Like fine-grained image classification, early works are mainly
based on basic low-level features, such as SIFT [19] and
HOG [22]. However, since 2010, the progress of handcrafted
features based object detection slows down. Due to the great
success of deep learning in the competition of ImageNet
LSVRC-2012, deep learning has been widely employed in
computer vision, including object detection. We divide the
CNN-based object detection methods into two groups by
the annotations used: (1) Supervised object detection, which
needs ground-truth bounding box of the object. (2) Weakly
supervised object detection, which does not need ground-truth
bounding box of the object, and only needs image-level labels.

1) Supervised Object Detection: Girshick et al. [23] pro-
pose a simple and scalable detection framework, regions with
CNN features, called R-CNN. First, it utilizes the region pro-
posal method (i.e. Selective Search [13]) to generate thousands
of region proposals for each image. Then it trains CNNs end-
to-end to extract highly discriminative features of these region
proposals. Finally, it classifies these region proposals based on
their discriminative features to determine whether the region
proposal can be output as a bounding box of the object in the
image. Inspired by R-CNN, many works follow the pipeline:
First utilize the region proposal methods to generate region
proposals for each image, and then employ CNNs to extract
their features and classify their category.

However, these methods have a limitation: Time consump-
tion is high because each region proposal needs to pass
forward CNNs respectively, while each image generally gen-
erates thousands of region proposals. This limitation causes
that object detection cannot satisfy the requirement of real-
time performance. For addressing this limitation, SPP-net [24]
and Fast R-CNN [3] are proposed. SPP-net applies a spatial
pyramid pooling (SPP) layer to pool a fixed-length feature
representation of each region proposal, which extracts the
feature maps from the entire image only once, and avoids
the time-consuming convolutional operation of each region
proposal. Comparing with R-CNN, SPP-net is 24 ∼ 102 ×
faster in object detection. However, SPP-net cannot update
the convolutional layers before the spatial pyramid pooling
layer, and its extracted features need to be stored to disk,
which limits both the accuracy and efficiency. Therefore, Fast
R-CNN [3] is proposed to fix the disadvantages of R-CNN
and SPP-net. Fast R-CNN utilizes a region of interest (RoI)
pooling layer to extract a fixed-length feature vector for each
region proposal based on the feature map, employs multi-
task loss to train the network in a single-stage, and updates
all network layers in the training phase. Comparing with
SPP-net, Fast R-CNN is 10 × faster and more accurate in
object detection.

However, all the above methods are based on the region pro-
posal methods, such as Selective Search [13], EdgeBoxes [25],
which become the computational bottleneck. These region
proposal methods are implemented with CPU, which causes
that the time consumption of generating region proposals
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Fig. 2. An overview of our WSDL approach. Multi-level attention extraction network (MAEN) extracts the attention information from multiple convolutional
layers to provide the bounding boxes of discriminative regions for training discriminative localization network (DLN). The DLN consists of one region proposal
network and multiple localization networks. We utilize 3-level attention and 3 localization networks in the figure to clearly demonstrate our WSDL approach.

is high. Therefore, Faster R-CNN [26] proposes a region
proposal network (RPN) to generate region proposals and
implements it with GPU, which makes the computation of
generating region proposals nearly cost-free.

2) Weakly Supervised Object Detection: All the above
object detection methods need ground-truth bounding box of
the object in the training phase, which is labor-consuming.
Recently, many methods [27]–[29] have begun to exploit
weakly supervised object detection based on CNNs. These
methods mainly base on activation maps of convolutional
layer, which is widely named as attention maps, such as
in [29]–[32]. As described in [30], attention maps are con-
sidered as a set of spatial maps that essentially try to encode
on which spatial areas of the input the network focuses
most for taking its output decision (e.g., for classifying an
image), where, furthermore, these maps can be defined w.r.t.
various layers of the network so that they are able to capture
both low-, mid-, and high-level representation information.
Oquab et al. [27] propose a weakly supervised learning
method based on an end-to-end CNN only with image-level
labels, and utilize max pooling operation to generate the atten-
tion map to localize the object. Zhou et al. [29] propose CAM,
which uses global average pooling (GAP) in CNN to generate
the attention map for each image. Based on the attention
map, the region of the object can be localized. Inspired by
CAM [29], we remove the fully-connected layers before final
output in CNN and replace them with global average pooling
followed by a fully-connected softmax layer, producing atten-
tion maps of different layers for each subcategory. From the
attention maps, we can obtain the discriminative regions that
convolutional layers attend to, and they are significant for the
classification.

III. WEAKLY SUPERVISED DISCRIMINATIVE

LOCALIZATION

We propose a weakly supervised discriminative localiza-
tion approach (WSDL) for fast fine-grained image classifi-
cation, where an n-pathway end-to-end network is designed
to localize discriminative regions and encode discrimina-
tive features simultaneously. Despite achieving a notable

classification accuracy, our WSDL approach improves classi-
fication speed as well as eliminates dependence on object and
part annotations simultaneously. An overview of our approach
is shown as Fig. 2. It consists of two subnetworks: multi-
level attention extraction network (MAEN) and discriminative
localization network (DLN). Multi-level attention extraction
network extracts multi-level attention information from differ-
ent convolutional layers for each image, and generates mul-
tiple initialized discriminative regions based on the attention
information. Then the bounding boxes of these discriminative
regions are adopted as the annotations to guide the training of
discriminative localization network, which localizes multiple
discriminative regions, avoiding the dependence on object
and part annotations. Both MAEN and DLN can generate
the discriminative regions, but with different advantages:
(1) Instead of using the labor-consuming human annotations,
MAEN provides the bounding box information of discrimina-
tive regions for the training of DLN automatically, even though
the discriminative region is not very accurate. It is noted that
MAEN is only employed in the training phase. (2) Based
on the initialized discriminative regions generated by MAEN,
DLN further optimizes the learned discriminative regions to
find where are more discriminative for distinguishing this
subcategory from others. Their combination makes the best
of their advantages and fixes their disadvantages to further
achieve better classification performance.

A. Multi-Level Attention Extraction Network

Attention is a behavioral and cognitive process of selectively
concentrating on a discrete aspect of information [33].
Tsotsos et al. [34] state that visual attention mechanism seems
to involve the selection of regions of interest in the visual field.
And Karklin and Lewicki [35] indicate that neurons in primary
visual cortex (e.g. V1) respond to the edge over a range of
positions, and neurons in higher visual areas (e.g. V2 and V4)
are more invariant to image properties and might encode
shape. The discovery is also shown in convolutional neural
networks (CNNs), different feature maps (attention) reflect
different characteristics of the image. The images in different
rows of Fig. 3 are the attention maps extracted from the
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Fig. 3. Examples of attention maps extracted by MAEN in our WSDL
approach.

convolutional layers of “Conv4_3”, “Conv5_3” and
“Conv_cam” in our multi-level attention extraction network
respectively. We can observe that different convolutional
layers have different focuses, and provide complementary
information to boost the classification accuracy.

According to the studies on visual attention mecha-
nism, we design the multi-level attention extraction net-
work (MAEN) to generate bounding box information for
discriminative localization network. We take resized images as
inputs and output n feature maps from n convolutional layers
as the multi-level attention maps to indicate the importance of
each pixel in the image for classification. Then we generate
the bounding boxes of discriminative regions based on these
attention maps. Inspired by CAM [29], we remove the fully-
connected layers before final output in CNN and replace them
with global average pooling followed by a fully-connected
softmax layer. Then we sum the feature maps of the certain
convolutional layer with weights to generate attention map for
each image. In this stage, we will generate n attention maps
based on n different convolutional layers. Finally, we perform
binarization operation on each attention map with an adaptive
threshold, which is obtained by OTSU algorithm [36], and
take the bounding box that covers the largest connected area
as the discriminative region. n bounding boxes of discrimi-
native regions are adopted as bounding box information of
discriminative localization network.

For a given image I , we generate n attention maps, the value
of spatial location (x, y) in i -th attention map is defined as
follow:

Mi (x, y) =
∑

ui

wui fui (x, y) (1)

where Mi (x, y) indicates the importance of activation at
spatial location (x, y) for classification, fui (x, y) denotes the
activation of neuron ui in the i -th convolutional layer at spatial
location (x, y), and wui denotes the weight used to sum the
activation fui (x, y) to generate the attention map. For different
convolutional layers, wui has different definitions as follow:

wui =
⎧
⎨

⎩
wc

ui
, last convolutional layer

1

|ui | , otherwi se
(2)

where wc
ui

denotes the weight corresponding to subcat-
egory c for neuron ui in the last convolutional layer,
denoted as “Conv_cam” in our MAEN. We use the predicted
result as the subcategory c instead of using the image-level

subcategory label. |ui | denotes the total number of neurons in
i -th convolutional layer.

B. Discriminative Localization Network

From multi-level attention extraction network, we obtain
n attention maps to guide the training of discriminative local-
ization network. To make the best of the complementarity
of multi-level attention information, we design an n-pathway
end-to-end network based on Faster R-CNN [26], which
consists of multiple localization networks and one region
proposal network. Faster R-CNN is proposed to accelerate the
process of detection as well as achieve promising detection
performance. We modify the original Faster R-CNN in two
aspects: (1) The training phase of Faster R-CNN needs ground-
truth bounding box of discriminative region in the image,
which is heavily labor-consuming. In this paper, we use
the bounding box information provided by multi-level atten-
tion extraction network as the ground-truth bounding box
information, which eliminates the dependence on object and
part annotations. (2) Inspired by the discoveries on visual
attention mechanism, we apply multi-level attention into our
WSDL approach. However, the application of multi-level
attention is restricted by the architecture of the original Faster
R-CNN. Original Faster R-CNN consists of one region pro-
posal network and one localization network, which restricts
it to only localize one discriminative region at one time.
We need to train n Faster R-CNN models to apply the
multi-level attention, which causes the nearly linear growth
of time consumption in classification. Therefore, we design
an n-pathway end-to-end network with multiple localization
networks and one region proposal network, where all the
localization networks share the same full-image convolutional
features generated by region proposal network.

Instead of using time-consuming region proposal methods
such as Selective Search method [13], region proposal net-
work (RPN) is designed to quickly generate region proposals
for each image by sliding a small network over the feature
map of last shared convolutional layer. At each sliding-window
location, k region proposals are simultaneously predicted,
and they are parameterized relative to k anchors. We apply
9 anchors with 3 scales and 3 aspect ratios. For training RPN,
a binary class label of being an object or not is assigned
to each anchor, which depends on the Intersection-over-
Union (IoU) [37] overlap with a ground-truth bounding box
of the object. But in our WSDL approach, we compute the
IoU overlap with the bounding boxes of discriminative regions
generated by MAEN rather than the ground-truth bounding
box of the object. And the loss function for an image is defined
as:

L({pi}, {ti }) = 1

Ncls

∑

i

Lcls (pi , p∗
i )

+ λ
1

Nreg

∑

i

p∗
i Lreg(ti , t∗i ) (3)

where i denotes the index of an anchor in a mini-batch,
pi denotes the predicted probability of anchor i being a
discriminative region, p∗

i denotes the label of being a dis-
criminative region of object or not depending on the bounding
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box t∗i generated by MAEN, ti is the predicted bounding box
of discriminative region, Lcls is the classification loss defined
by log loss, and Lreg is the regression loss defined by the
robust loss function (smooth L1).

Since we apply multi-level attention into our WSDL
approach, we employ n localization networks, and each of
them is the same with Fast R-CNN [3]. All the localization
networks are connected to RPN by a region of interest (RoI)
pooling layer, which is employed to extract a fixed-length
feature vector from feature map for each region proposal
generated by RPN. Each feature vector is taken as the input of
each localization network, and passes forward to generate two
outputs: one is predicted subcategory and the other is predicted
bounding box of discriminative region. Through discriminative
localization network, we obtain the discriminative regions with
multi-level attention. Then we average the predicted scores of
the discriminative regions with multi-level attention and the
original image to obtain the subcategory of each image.

C. Training of MAEN and DLN
MAEN learns the multi-level attention information of image

to tell which regions are important and discriminative for
classification, and then guides the training of DLN. RPN
in DLN generates region proposals relevant to the discrim-
inative regions of images. Considering that training RPN
needs bounding boxes of discriminative regions provided by
MAEN, we adopt the strategy of sharing convolutional weights
between MAEN and RPN to promote the localization learning.

First, we train the MAEN. This network is first pre-
trained on the ImageNet 1K dataset [38], and then fine-
tuned on the fine-grained image classification dataset, such as
CUB-200-2011 dataset [1]. Second, we train the RPN. Its
initial weights of convolutional layers are cloned from MAEN.
Instead of fixing the shared convolutional layers, all layers
are fine-tuned in the training phase. Third, we train the
localization networks. Since all the localization networks share
full-image convolutional features generated by RPN, we fix the
parameters of RPN when training the localization networks
with multi-level attention.

D. Implementation Details

Our WSDL approach consists of two subnetworks: multi-
level attention extraction network (MAEN) and discriminative
localization network (DLN). Both of them are all based
on 16-layer VGGNet [39], which is widely used in image
classification task. It can be replaced with the other CNNs.
MAEN extracts the attention information of images to provide
bounding boxes needed by DLN. For VGGNet in MAEN,
we remove the layers after “Conv5_3” and add a convolutional
layer of size 3 × 3, stride 1, pad 1 with 1024 neurons,
which is followed by a GAP layer and a softmax layer [29].
We adopt the object-level attention of Xiao et al. [9] to
select relevant image patches for data extension. And then
we utilize the extended data to fine-tune MAEN for learning
discriminative features. The number of neurons in softmax
layer is set as the number of subcategories in the dataset. DLN
shares the weights of layers before “Conv5_3” with MAEN

for better discriminative localization as well as classification
performance.

At training phase, for MAEN, we initialize the weights with
the network pre-trained on the ImageNet 1K dataset [38], and
then use SGD with a minibatch size of 20. We use a weight
decay of 0.0005 with a momentum of 0.9 and set the initial
learning rate as 0.001. The learning rate is divided by 10 every
5K iterations. We terminate the training phase at 35K iterations
on CUB-200-2011 dataset [1] and 55K iterations on Cars-196
dataset [40] because of different convergence rate. The
discriminative localization network designed in our WSDL
approach consists of one RPN and n localization networks.
In the training phase, each localization network is trained
one by one with RPN. We first initialize the weights of
the convolutional layers in RPN with the MAEN, and then
train the RPN and 3 localization networks. When training the
localization networks, the weights of RPN are fixed, and only
the weights of the localization network are fine-tuned. For the
training of RPN and localization network, we start SGD with
a minibatch size of 128, use a weight decay of 0.0005 with a
momentum of 0.9 and set the initial learning rate to 0.001.
We divide the learning rate by 10 at 40K iterations on
CUB-200-2011 dataset and 50K iterations on Cars-196 dataset,
and terminate training at 90K iterations on CUB-200-2011
dataset and 120K iterations on Cars-196 dataset.

IV. EXPERIMENTS

We conduct experiments on 2 widely-used datasets in the
fine-grained image classification task: CUB-200-2011 [1] and
Cars-196 [40] datasets. Our WSDL approach is compared
with state-of-the-art methods to verify its effectiveness, where
our WSDL approach achieves both the best accuracy and
efficiency of fine-grained image classification.

A. Datasets

Two datasets are adopted in the experiments:
• CUB-200-2011 [1] is the most widely-used dataset in

fine-grained image classification task, which contains
11788 images of 200 subcategories belonging to the
category of bird, 5994 images in the training set and
5794 images in the testing set. Each image is labeled with
detailed annotations including an image-level subcategory
label, a bounding box of the object and 15 part locations.
In our experiments, only image-level subcategory label is
used in the training phase.

• Cars-196 [40] contains 16185 images of 196 car sub-
categories, which is divided as follows: the training
set contains 8144 images, and the testing set contains
8041 images. For each subcategory, 24∼84 images are
selected for training and 24∼83 images for testing. Every
image is annotated with an image-level subcategory label
and a bounding box of the object. The same with CUB-
200-2011 dataset, only image-level subcategory label is
used in the training phase.

B. Evaluation Metrics

Accuracy is adopted to comprehensively evaluate the clas-
sification performances of our WSDL approach as well as the
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TABLE I

COMPARISONS WITH STATE-OF-THE-ART METHODS ON CUB-200-2011 DATASET IN THE ASPECT OF
CLASSIFICATION ACCURACY TO SHOW THE EFFECTIVENESS OF OUR WSDL APPROACH

compared state-of-the-art methods, which is widely used in
fine-grained image classification [6], [10], [15], and defined
as follow:

Accuracy = Ra

R
(4)

where R denotes the number of images in the testing set
(e.g. R equals to 5794 in the CUB-200-2011 dataset), and
Ra denotes the number of images that are correctly classified.

Intersection-over-Union (IoU) [37] is adopted to evaluate
whether the predicted bounding box of discriminative region
is a correct localization, and its definition is as follow:

IoU = area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(5)

where Bp denotes the predicted bounding box of discrimi-
native region, Bgt denotes the ground-truth bounding box of
the object, BP ∩ Bgt denotes the intersection of the predicted
and ground-truth bounding boxes, and Bp ∪ Bgt denotes their
union. The predicted bounding box of discriminative region is
correctly localized, if the IoU exceeds 0.5.

C. Comparisons With State-of-the-Art Methods

This subsection presents the experimental results and
analyses of our WSDL approach as well as the compared

state-of-the-art methods on the widely-used CUB-200-
2011 [1] and Cars-196 [40] datasets. We verify the effec-
tiveness of our WSDL approach in the following aspects:
(1) Accuracy of classification. (2) Efficiency of classification.
The experimental results show that our WSDL achieves better
performance than state-of-the-art methods in both accuracy
and efficiency of classification.

1) Accuracy of Classification: Tables I and II show the com-
parisons with state-of-the-art methods on CUB-200-2011 and
Cars-196 datasets in the aspect of classification accuracy.
Object, part annotations and CNN features used in these
methods are listed for fair comparison. As object annotation is
easily confused with image-level subcategory label, we explain
as follows: Image-level subcategory label is different from
object annotation. Image-level label denotes which subcate-
gory the image belongs to, such as “Laysan Albatross” and
“Rusty Blackbird”. While object level label denotes bounding
box of the object in an image, which is an axis-aligned
rectangle specifying the extent of the object. The bounding
box is represented as (x, y, width, height) , where (x, y)
denotes the coordinate information of the top left corner of
the object, and (width, height) denotes the width and height
of the object. In Tables I and II, “Object” means ground-truth
bounding box, not image-level label. Our WSDL approach
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TABLE II

COMPARISONS WITH STATE-OF-THE-ART METHODS ON CARS-196 DATASET IN THE ASPECT OF CLASSIFICATION
ACCURACY TO SHOW THE EFFECTIVENESS OF OUR WSDL APPROACH

TABLE III

COMPARISONS WITH STATE-OF-THE-ART METHODS IN THE ASPECT OF CLASSIFICATION EFFICIENCY. CUB-200-2011 DATASET IS ADOPTED
AS THE EVALUATION DATASET, AND AVERAGE CLASSIFICATION SPEED IS EVALUATED BY THE FRAMES RECOGNIZED PER SECOND,

DENOTED AS FPS. THE RESULTS ARE ALL OBTAINED ON THE COMPUTER WITH ONE GPU OF NVIDIA
TITAN X @1417MHZ AND ONE CPU OF INTEL CORE I7-6900K @3.2GHZ

only uses image level labels, which avoids the heavy labor
consumption of the labeling of bounding box, but still achieves
the best classification accuracy. CNN model shown in the
column of “CNN Features” indicates which CNN model is
adopted to extract features. If the method adopt handcrafted
feature like SIFT, the column of “CNN Features” is none.
We present detailed analyses of our WSDL approach as well
as compared methods on CUB-200-2011.

Early methods choose SIFT [19] as basic feature and even
use both object and part annotations, such as POOF [21]
and HPM [20], but their classification results are limited and
much lower than our WSDL approach. Our WSDL approach
achieves the highest classification accuracy among all the
state-of-the-art methods under the same weakly supervised
setting, which indicates that neither object nor part annotations
are used both in training and testing phases. Our WSDL
achieves the improvement by 1.02% than the best state-of-
the-art result of TSC [12] (85.71% vs. 84.69%), which jointly
considers two spatial constraints in part selection. Despite
achieving better classification accuracy, our WSDL approach
is over two order of magnitude faster (i.e. 27 × faster) than
TSC, as shown in Table III. The efficiency analyses will be
described latter. And our WSDL approach achieves better
classification accuracy than the method of Bilinear-CNN [43],

which combines two different CNNs: VGGNet [39] and
VGG-M [63]. Its classification accuracy is 84.10%, lower than
our approach by 1.61%.

Even compared with state-of-the-art methods using object
annotations in both training and testing phases, such as Coarse-
to-Fine [49], PG Alignment [8] and VGG-BGLm [47], our
WSDL approach achieves improvement by at least 2.81%.
Moreover, our WSDL approach outperforms state-of-the-art
methods using both object and part annotations, such as
SPDA-CNN [14]. Neither object nor part annotations are
used in our WSDL approach, which marches toward practical
application. Besides, the application of multi-level attention in
our WSDL approach boosts the localization of discriminative
regions and further improves the fine-grained image classifi-
cation accuracy.

Comparing with the methods using ResNet [64], our WSDL
approach still achieves better performance. RBF proposes a
non-parametric method for metric learning and classification,
which is based on the ResNet-50. But it is 6.73% lower
than our WSDL approach. AGAL also uses ResNet-50, and
achieves adjacent classification accuracy with ours (85.40%
and 85.50%). But, it is noted that part locations and attribute
annotations are used in AGAL, neither of them is used in our
WSDL approach.
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The experimental results of comparisons with state-of-the-
art methods on Cars-196 dataset in the aspect of classification
accuracy are shown in Table II. The trends are similar
with CUB-200-2011 dataset, where our WSDL approach
achieves the best classification accuracy among all the state-
of-the-art methods under the same weakly supervised setting,
which brings 1.00% improvement than the best classifica-
tion results from compared methods. Our WSDL approach
outperforms those methods using object annotations, such as
DPL-CNN [47], [61], and is only beaten by PG Alignment [8]
and BoT [60] no more than 0.30%.

From Tables I and II, we can see that our WSDL approach
with n-pathway achieves better classification accuracy than our
conference version [16] on both CUB-200-2011 and Cars-
196 datasets, which verifies the effectiveness of n-pathway
approach with multi-level attentions.

2) Efficiency of Classification: Experimental results of
comparisons with state-of-the-art methods in the aspect
of classification efficiency are presented in Table III.
Average classification speed is evaluated by the frames
recognized per second, denoted as fps. Since it has little
relation with datasets, CUB-200-2011 dataset is adopted
as the evaluation dataset. We get the average classification
speed on the computer with one GPU of NVIDIA TITAN X
@1417MHZ and one CPU of Intel Core i7-6900K @3.2GHZ.
Compared with state-of-the-art methods, our WSDL approach
achieves the best performance on not only the classification
accuracy but also the efficiency. We split state-of-the-art
methods into 2 groups by the basic CNN models used
in their methods: VGGNet [39] and AlexNet [65]. Apart
from hardware environment, average classification speed
also depends on implementation of the method. Different
implementations achieve different average classification
speeds. For fair comparison, we directly run the source
codes provided by authors of compared methods under the
same experimental setting, except Part-stacked CNN [55].
Its average classification speed is reported as 20 fps in the
original paper. It reports that a single CaffeNet [66] runs at
50 fps under the experimental setting (NVIDIA Tesla K80).
In our experiments, a single CaffeNet runs at 35.75 fps,
so we calculate the speed of Part-stacked CNN in the same
experimental setting with ours as 20×35.75÷50 = 14.30 fps.
Compared with state-of-the-art methods in the first group, our
WSDL approach is 2 × faster than Bilinear-CNN (9.09 fps
vs. 4.52 fps). Besides, the classification accuracy of our
WSDL approach is also 1.61% higher than Bilinear-CNN on
CUB-200-2011 dataset. Even more, our WSDL approach is
over two orders of magnitude faster than methods based on
labor-consuming region proposal methods, such as TSC [12],
TL Atten [9] and NAC [11]. When utilizing AlexNet as the
basic CNN, our WSDL approach is still faster than Part-
stacked CNN [55], which also utilizes AlexNet. It is noted that
neither object nor part annotations are used in our approach,
while all are used in Part-stacked CNN. Our WSDL approach
avoids the time-consuming classification process by the
design of discriminative localization network (DLN) with one
region proposal network and multiple localization networks,
and achieves the best classification accuracy by the mutual

TABLE IV

EFFECTIVENESS OF MULTI-LEVEL ATTENTION IN OUR WSDL
APPROACH ON CUB-200-2011 AND CARS-196 DATASETS

IN THE ASPECT OF CLASSIFICATION ACCURACY

TABLE V

EFFECTIVENESS OF DISCRIMINATIVE LOCALIZATION NETWORK

IN OUR WSDL APPROACH ON CUB-200-2011 DATASET

IN THE ASPECT OF CLASSIFICATION EFFICIENCY

promotion between localization and classification. This leads
the fine-grained image classification to practical application.

D. Effectivenesses of Components in Our WSDL Approach

Detailed experiments are performed to show the effec-
tiveness of each component in our WSDL approach in the
following two aspects:

1) Effectiveness of Multi-Level Attention in the Aspect of
Classification Accuracy: In our WSDL approach, multi-level
attention is applied. Different level attentions focus on dif-
ferent characteristics of the image, which are complementary
and boost the classification accuracy. In the experiments,
we extract the attention maps from the convolutional layers of
“Conv4_3”, “Conv5_3” and “Conv_cam” in our MAEN, and
evaluate their effectivenesses. From Table IV, we can observe
that the combination of different level attentions boosts the
classification accuracy, which verifies the complementarity
among them. The attention from “Conv4_3” plays a minor
role in promoting the classification accuracy. Besides, the time
consumption of the application of three-level attention is
high. Therefore, in our experiments, we only adopt two-level
attention from “Conv5_3” and “Conv_cam” to achieve the
best trade-off between classification accuracy and efficiency,
as shown in Tables I to III.

2) Effectiveness of Discriminative Localization Network in
the Aspect of Classification Efficiency: Since we apply multi-
level attention, there are 2 choices: (1) Train n discriminative
localization networks, each of which consists of one RPN and
one Fast R-CNN, denoted as “two-level (respectively)” and
“three-level (respectively)” in Table V, which causes the linear
growth of time consumption. (2) In our WSDL approach,
we design an n-pathway discriminative localization network
with one RPN and n localization networks, and all of them
share the same region proposals generated by RPN, which
avoids the linear growth of time consumption, denoted as
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Fig. 4. Samples of predicted bounding boxes of discriminative regions (yellow rectangles) based on the attention information from “Conv_cam” and
ground-truth bounding boxes of objects (red rectangles) at different ranges of IoU on CUB-200-2011 and Cars-196 datasets.

Fig. 5. Samples of the bounding boxes of discriminative regions based on
two level attentions from “Conv_cam” (yellow rectangles) and “Conv5_3”
(green rectangles) on CUB-200-2011 and Cars-196 datasets.

“two-level (dln)” and “three-level (dln)” in Table V. From
Table V, we can observe that our designed architecture of
DLN reduces the time consumption.

E. Comparisons With Baselines

Our WSDL approach is based on Faster R-CNN [26],
MAEN, and VGGNet [39]. To verify the effectiveness of
our WSDL approach, we present the results of comparisons
with Faster R-CNN, MAEN and VGGNet on CUB-200-2011
dataset in Table VII. “VGGNet” denotes the result of directly
using fine-tuned VGGNet, “MAEN” denotes the result of
directly using MAEN, and “Faster R-CNN (gt)” denotes the

result of directly adopting Faster R-CNN with ground-truth
bounding box of the object to guide training phase. Our
WSDL approach achieves the best performance even without
using object or part annotations. We adopt VGGNet as the
basic model in our approach, but its classification accuracy
is only 70.42% , which is much lower than ours. It shows
that the discriminative localization has promoting effect to
classification. With discriminative localization, we find the
most important regions of images for classification, which
contain the key variance from other subcategories. Compared
with “Faster R-CNN (gt)”, our approach also achieves better
performance. It is an interesting phenomenon that worth
thinking about. From the last row in Fig. 4, we observe that not
all the areas in the ground-truth bounding boxes are necessary
for classification. Some ground-truth bounding boxes contain
large area of background noise that has less useful information
and even leads to misclassification. So discriminative localiza-
tion is significantly helpful for achieving better classification
performance. MAEN has similar localization accuracy with
our WSDL approach according to Table VIII, but has lower
accuracy as in Table VII. It is mainly because of the differ-
ent learning abilities of MAEN and WSDL. In the training
phase, MAEN only learn from the original images. While
our WSDL approach first generates proposals for each image,
and these proposals drive the model to learn discriminative
localization and classification simultaneously, which makes the
model learn more discriminative features with multiple scales
and granularities. So our WSDL approach can achieve better
classification accuracy.
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TABLE VI

PCL FOR EACH PART OF THE OBJECT IN THE CUB-200-2011 DATASET

Fig. 6. Classification confusion matrices on CUB-200-2011 and Cars-196 datasets. The yellow rectangles show the sets of subcategories with the higher
probability of misclassification.

F. Effectiveness of Discriminative Localization

Our WSDL approach focuses on improving the localiza-
tion and classification performance simultaneously. Since the
discriminative regions are generally located at the region of
the object in the image, we adopt the IoU overlap between
the discriminative region and ground-truth bounding box of
the object to evaluate the correctness of localization. We con-
sider a bounding box of discriminative region to be correctly
predicted if its IoU with ground-truth bounding box of the
object is larger than 0.5. We show the results obtained
from “Conv_cam” on CUB-200-2011 and Cars-196 datasets
in Table VIII, and our WSDL approach achieves the accuracy
of 46.05% and 56.60%. Considering that neither object nor
part annotations are used, it is a promising result. Compared
with “MAEN” which means directly using the attention map
from “Conv_cam” to generate bounding box, our WSDL
approach achieves improvements by 8.21%, which verifies its
effectiveness.

We also show some samples of predicted bounding boxes
of discriminative regions and ground-truth bounding boxes
of objects at different ranges of IoU (e.g. 0∼0.2, 0.2∼0.4,
0.4∼0.6, 0.6∼0.8, 0.8∼1) on CUB-200-2011 and Cars-196
datasets, as shown in Fig. 4. We have some predicted bound-
ing boxes whose IoUs with ground-truth bounding boxes of
objects are lower than 0.5. But these predicted bounding
boxes contain discriminative regions of the objects, such as
heads or bodies. It verifies the effectiveness of our WSDL

approach in localizing discriminative regions of object for
achieving better classification performance. Fig. 5 shows
the bounding boxes of discriminative regions based on two
level attentions from “Conv_cam” and “Conv5_3”. We can
observe that different attentions focus on different regions,
and provide complementary information to boost the classi-
fication accuracy. To further verify the effectiveness of dis-
criminative localization in our WSDL approach, quantitative
results are given in terms of the Percentage of Correctly
Localization (PCL) in Table VI, which estimates whether the
predicted bounding box contains the parts of object or not.
CUB-200-2011 dataset provides 15 part locations, which
denote the pixel locations of centers of parts. We consider
our predicted bounding box contains a part if the part location
lies in the area of the predicted bounding box. Table VI shows
that about average 94.68% of the parts located in our predicted
bounding boxes. It shows that our discriminative localization
can detect the distinguishing information of objects to promote
classification performance.

G. Different Focuses of Different Level Attentions

As described in [32] and [67], different convolutional layers
capture patterns from simple visual elements such as edges,
to complex visual concepts such as parts and objects. Different
layers describe the visual content at different parts, each of
which is complementary to each other for the task of recogni-
tion. We generate bounding boxes from different convolutional
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Fig. 7. Examples of the most confused subcategory pairs in CUB-200-2011 and Cars-196 datasets. One subcategory is mostly confidently classified as the
other in the same row in the testing phase.

TABLE VII

COMPARISON WITH BASELINES ON CUB-200-2011 DATASET

TABLE VIII

LOCALIZATION RESULTS ON CUB-200-2011 AND CARS-196 DATASETS

TABLE IX

PROPORTIONS OF IOU ON CUB-200-2011 AND CARS-196 DATASETS

layers, which have different focuses on different regions.
We adopt Intersection-over-Union (IoU) [37] of bounding
boxes from the layer of “Conv_cam” and “Conv5_3”, to verify
different focuses of different level attentions. In Table IX,
we present the proportion when IoU is over a specific thresh-
old. We can see that the proportions of IoU > 0.5 are only
13.22% in CUB-200-2011 dataset and 4.44% in Cars-196
dataset. The proportions of IoU > 0.7 are very small, which
verify that different level of activation maps attend to different
discriminative regions.

There may be more than one connected areas and they are
both discriminative regions. They will be obtained by different
convolutional layers. Actually, we consider one discriminative
region in each convolutional layer, which has the largest
connected area and would be the most discriminative region.
But, different convolutional layers focus on different regions as
described above. Therefore, multi-level attention could cover
the discriminative regions.

H. Analysis of Misclassification

Fig. 6 shows the classification confusion matrices on
CUB-200-2011 and Cars-196 datasets, where coordinate axes
denote subcategories and different colors denote different
probabilities of misclassification. The similar subcategories
that belong to the same genus or car brand are set to the
adjacent image-level subcategory label ids in the original
datasets. So misclassified subcategories with higher probability
would appear near the diagonal, as shown in the yellow
rectangles of Fig. 6. The small variance is not easy to measure
from the image, which leads the high challenge of fine-grained
image classification. Fig. 7 shows some examples of the
most probably confused subcategory pairs. One subcategory
is most confidently classified as the other in the same row.
The subcategories in the same row look almost the same, and
belong to the same genus. For example, “Common Tern” and
“Forsters Tern” look the same in the appearance, as shown
in the left third row of Fig. 7, because both of them have
the same attributes of white wings and black forehead, and
belong to the genus of “Tern”. It is even extremely difficult
for human beings to distinguish between them. Similarly, it is
hard to distinguish between “Audi TT Hatchback 2011” and
“Audi TT RS Coupe 2012”.

V. CONCLUSION

In this paper, the weakly supervised discriminative
localization approach (WSDL) has been proposed for fast
fine-grained image classification. We first apply multi-level
attention to guide the discriminative localization learning to
localize multiple discriminative regions simultaneously for
each image, which only uses image-level subcategory label
to avoid using labor-consuming annotations. Then we design
an n-pathway end-to-end discriminative localization network
to simultaneously localize discriminative regions and encode
discriminative features, which not only achieves a notable
classification performance but also improves classification
speed. Their combination simultaneously improves classifi-
cation speed and eliminates dependence on object and part
annotations. Comprehensive experimental results show our
WSDL approach is more effective and efficient compared with
state-of-the-art methods on 2 widely-used datasets.
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The future works lie in three aspects: First, we will make our
WSDL approach better by learning better discriminative local-
ization via exploiting the effectiveness of fully convolutional
networks. Second, we will make our WSDL approach faster by
designing a more efficient network with less operations for a
forward pass. Third, we will make our WSDL approach more
generalized by training one model to support the classification
of different datasets.
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